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At the present time, the calculation of heat transfer is based, in its
most essential part, on the artificial introduction of a coefficient of
heat transfer, a. With its aid, several phenomena occurring at a surface
of contact between two materials are taken into account in a conventional
way. The mean value of this coefficient is decisive for approximate
engineering calculations and examples because it accounts in some way for
the integral effect of the contact surface.

In mathematical terms, the complex nature of surfaces in thermal con-
tact is translated into a boundary condition of the third kind with a
coefficient of proportionality a. In many cases this boundary condition
is purely local; it represents, in essence, the ratio of the normal deri-
vative to the temperature difference at a point on the boundary of the
contact surface. Generally speaking, it depends on the relevant physical
parameters of the arrangement. This circumstance is well known and
suggests the usefulness of providing mathematical solutions to a number
of specific problems involving the above boundary conditions.

In addition, in the problems involving contact which have been con-
sidered by the author [1.11 ], the introduction of boundary conditions
of the third kind proves to be possible, because in the general expres-
sion for the resistance to heat transfer, the component a~ ! turns out to
be small compared with the resistance of the insulating material.

The above statement, formulated in relation to thermal waves which
may exist under the insulation of a cooler, does not constitute a
particular case if only because this class of problems includes the cal-
culation of the foundations of a large number of structures as well as
problems involving diffusion and thermal diffusion. The essential feature
of the analysis consists in the fact that it introduces new charscter-
istic parameters in the form of generalized complex coefficients of heat
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transfer which express the non-steady nature of the phenomena under con-
sideration.

Similar problems are of interest also in the field of acoustics and
applied electrodynamics involving impedance-type boundaries. The differ-
ence between the present and latter problems consists in the fact that
the numerical values of the appropriate dimensionless parameters are
different, and this makes it possible to apply entirely different methods
of approximation and to construct an exact solution of the problem with
the aid of Mathieu’s function.

1. Statement of problem. The temperature field in the ground
under the insulation of a cooler consists of two components: (1) a steady
temperature field determined by the mean values of the temperature of
the air above the surface, of the water in the ground, and of the
chambers of the cooler [11]; and (2) a non-steady field which arises in
connection with fluctuation of the preceding temperatures about the
respective mean values,

In order to enalyze the non-steady field, we shall consider a cooler
without a basement but with an insulated floor whose width is 2 I and
with an insulation of thickness 8. Let the functions 6%(z, y, t) and
0(x, y, t) determine the non-steady temperature field in the insulation
and in the ground, respectively. H denotes the depth of the ground water;
A, and A, denote the thermal conductivities of the insulation and the
ground, respectively; a_ denotes the coefficient of heat transfer of the
floor of the cooler; @, and a; denote the thermal diffusivities of the
insulation and the ground, respectively. The temperature field in a
homogeneous ground is then given by Fourier’s equation

d%0 0% 1 090

2

The boundary conditions are

0=A8, at y=0, lz|>! (1.2y

86° o
7‘3%‘3:)\1‘ ay §=06" at y=0,|z|<! (13)
8=A8, at y=—H (1.4)

where A6,(t) and A6,(t) denote the departures of the temperatures of
the air above the surface of the ground and underground water from their
mean values 0, and 6,.

The function 8%(x, y, t) is determined by the condition
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_)‘u%z%(e"—Aﬁc) at y=3,|z|<! (1.5
where A€ (x, t) denotes the deviation of temperature in the chambers of
the cooler from the mean value 6 (x).

In the case of a homogeneous insulation, the function 8%(x, y, t)
satisfies Fourier’s equation (1.1) for 0 < y <& and [x| < I, it only
being necessary to replace ¢, by a,. From an analysis of dimensions (1]
it can be shown that with an accuracy which is sufficient for practical
applications, the equation valid within the thickness of the insulation
can be simplified to

026° 1 006°

= e e 1oT 0<y <, lel<1 (1.6)

because the thickness of the insulation 8 is much smaller than the width
2 1.

In what follows, we shall study the response of the system to a
harmonic input, i.e. we shall assume

Aby = Aeint, A8y, = Beiot, Af, = Ceiot
(1.7)
O(z,y,t) =0(z,y)eiot,  0(z,y,8) =6°(z,y)ei*  (j=V—9)

Here, and in what follows, it is necessary to consider only the real
part of complex expressions which contain the exponential time-dependent
term exp jowt,

In view of (1.7), Equations (1.1) and (1.6) transform to

( 7 )’) (1.8)

9%° N v,
S = U+ P for 0<y <, 2] <! (5u=<2_(:—) ) (1.9)

u°

0% | 2% :
W+a—w=(1+])2cz29 for —-H<y<0 (6.

Equation (1.9) gives (1.10)
0°(z,y)=C, (x)c"ﬂh% y+C, (x)unh};—"y for 0Sy <<y Izl<i(py=(1+/)0,D)

where C, and C, denote constants of integration which depend on x.

Making use of relations (1.3), (1.5), (1.7) and (1.10) we obtain the
following condition for 6(x, y):
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B b —kyC

S at y-=0, |x|<! (1.11)

e R

where k, and k, denote generalized complex coefficients of heat transfer
which are determined by the relations

Aty (@ Beoshp, 4 Ay stabp ) e — Ay,
5 {a Dstnne )xup.ucoshp.u) ! e

Ky = (1.12)

= g beimhp A p cosny,

In the case of non-homogeneous insulation consisting of separate
layers, the boundary condition (1.11) retains its form but the parameters
k, and k, must be calculated with the aid of more complicated expressions.
When |p2, | is small (sinh g, ~ p,, cosh p, = 1), the generalized complex
coefficients of heat transfer assume the same steady-state value

1 § \—1
b= (b
o, }\u ¥

However, in the present case, the quantity |p,| is not small. In
fact, for an insulation consisting of glass wool a, = 107 3 m?/hr and
hence, for annual fluctuations g, = (1+ j)&/1.65, where d is of the
order of 1 m,

Consequently, it is necessary to determine the function 6(x, y) from
Equation (1.8), subject to the boundary condition (1.11) and conditions
(1.2) and (1.4). In view of (1.7), the latter become

0=A at y=0z|>], =8B at y==—H (1.13)
The problem can be simplified somewhat, if we put

O(z,y) =08 (x,y) + Uz, y)
B, = A B coth {},3>smnpa( e v ) Beosn Le<i - -—) (1.14)

simhyiz,
(pe = (1 - 1) oqH)

where the function U(x, y) is determined by Equation (1.8) subject to
(1.11) and (1.13) and satisfies the conditions

=7, at y=0 |z| <1 (1.1%)

p Ao pee , Aga
kvc" = ko0 — A <k1 + coth Me) + B m)

U=0 at y=0, {«|>land aty=—H (1.16)

We note here that in the case of a multi-chamber cooler provided with
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an external layer of insulation in the ground around the outer walls of
the cooler, the quantity C constitutes a piecewise continuous function
equal to A at the sections of the external insulation.

2. Construction of solution. We shall prove that the function
U(x, y) determined by Equation (1.8) is regular in the strip -H < y <0,
Furthermore, it is unique if it satisfies conditions (1.15) and (1.16)
for given v_°. Indeed, let U;(x, y) and U,(x, y) denote two functions,
both regular, in the strip - H <y<0 and satisfying Equation (1.8) as
well as the conditions (1.15) and (1.16); then, the function U, = U; ~ U,
satisfies the conditions

3U0_ k _ — =—~Handy =0 l
By —7:U0 1at y=0, jz|<l, U,=0 at y= andy vzl >

and vanishes at x » * «. Applying Green’s formula, we obtain

1

\g (vvo*.vvo 4 ’ai UO‘U0> s = — i‘_: & U,Uds (2.1)

s -1

where S denotes an area in the strip - H< y < 0 and U,* is complex-
conjugate. From (2.1) we obtain

(2.2)

S& VU, TUdS = —E‘#S |U, Pdx _aﬁWU [2dS — ‘m("l)g U, |2 dz
S

—l

In order to calculate the signs of the real and imaginary parts of
the coefficient k,, we shall make use of simplified forms of the general-
ized coefficients of heat tramnsfer. We note that for an insulation made
of glass wool A = 0.03 kcal/m? hr °C, a, = 10" m?/hr and a_ is of
order 10 kcal /m? hr °C. Hence, in the case of annual fluctuauons
|)tupu/ac3| 0.004. Consequently, and with an accuracy which is suffi-
cient for practical applications, it is possible to neglect this ratio
in Equations (1.12) and to simplify*

kz fp1nn2z -+ sin 2z + J s10n2z — sin 22)]
2 ost® 7 — cos? z)

ky = kg coth g =

Joy = by, __ Kz [sink 2 cOS zt-cosn 2 8in 2 + idinnz COS z —cosnz Sin z)]
b2 —slnhp.u - cosh2 7z — COS2 z (23)

* PFor {p,|>> 1 we obtain the limiting values k; = A (1 + j) o, and
kz = 0 which reduce the boundary conditions (1.11) to those studled
by Leontovich.
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)\u t . % -1
kx-s—z(az—r)—‘;—) y z:cuS
where k denotes the approximate value of the steady-state coefficient of
heat transfer. It follows from (2.3) that Re(k;) > 0 and Im(k;) > 0, and
according to (2.2) we have U, = 0. We begin by writing down the exact
solution for the case when underground water is absent (H =, 6, =

A expl (1+ j)a, y]). In order to do that we transform to an elliptic
system of coordinates ¢ and 5 with the aid of the relations

x = leomEcosy, y = lsmEsiny (2.4)

Conditions (1.15) and (1.16) now assume the form

-—?;+v15in*qu=vcsinn at £=0, —n <% <0,
by
u=0 at y=0,n3=—m= E>0
k1 Iepl .

(I?cz\hgc"«-(\il—'r}k)fi; v1=-"§';.vz=}\—z" P:{i"‘r’)“af) (2.5)
and Equation (1.8) transforms to

O%u , O 2 (osn? 2 - ( o _, ;o

b I peiocostmu=0  (w=s2) 26

We make use of the completeness of the derivatives of the Mathieu
function Se,(£)se (), which constitute particular solutions of Equation
(2.6), where sen(ns constitute orthogonal systems of periodic functions
and which are normalized as follows:

S [sen(MPdy=r (n=12,..2

The function se, () can be represented by the Fourier series [2]

sen (M) = 3| Bnrsinry (2.7

re==1

where the indices n and r are both even or odd and the coeffigiem;s B,
are entire functions of the parameter ¢ = — 1/4 p%. The function Sen(fs
can also be represented in the form of a series of Bessel functions

£3,41.

We shall represent the function U in the form of the series
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- ey (E)

v-3% g 050 (1) (2.8)

This expression satisfies the second condition (2.5). In view of the
properties of the function Se, ({), the series assumes the damping of
the temperature waves as y » — o, In order to determine the coefficients

we substitute (2.8) into the first condition {2.5), when we obtain

d“,

& Se,
2 Se,, (f)‘) @nSen (M) + V1 2) G SiD 7 S€y, () = v siny
- 2.9)

We now expand the following functions in terms of the Mathieu func-
tion se (y) in the interval — # < 5 < 0. We obtain

nz=l

[4]
(d,,,n = —i— S sin n se,, (7) se,, (1) dn) (2.10)

-t

[++]
sinysem (1) = 3} dom sen (1)

n=1

o 1]
vesing =3 basealn)  (5,=2 S vsinnse,(mdr)  (2.41)
n==1 —n

Evaluating the coefficients d, , with the aid of (2.7), we obtain

3
dnm = 2 Bnr Bmi lri

ri=1

(2.12)

where the coefficients I, are different from zero only if r and i are

both even or odd and are of the form
i

L A LTE T — ]
PR T I F e+ P -1 A(p—qr—1 (2.13)

b= — =T ~ 1=
0= T T T F =1 4(P°‘"9)2”‘1]

Consequently, the coefficients d,, are also different from zero when
n and m are both even or odd.

Substituting (2.10) and (2.11) into (2.9) and equating the coeffi-
cients of se (1;) we obtain two independent systems of equations for the
coefficients ' a,

Se (0) o
+

58(0) Qagpi+ vy Z dost1, o1 41821 41 = bos iy {s=0,1,...) (2.14)

+

=0
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Se, .’ (0) )
T2 y! — D . K
Se,4 (0) azs 1T V1 21 do, 21 Qg1 = Das (s=1,2,...) 2.15)

=1

The coefficients a, can now be determined with the aid of infinite
determinants [5 1, and it is noted that in view of the uniqueness of the
solution these determinants are different from zero. In the case which is
important in practical applications, v, (x) is an even function, and hence
all by, = 0 and, consequently, ay, = 0 We remark in particular that for

v = const we have 62“_1_ vB

¢ 28+ 1°

When |p?| is small, the function Se Wl&) =~ exp (~n&) and d, Lin-
For this reason, when |p?| is small, the systems of equatlons 2" 14) and
(2.15) become identical with those d1scussed in[1], i.e. with systems
whose solvability has been demonstrated.

Having determined the coefficients a_, it is possible to obtain the
non-steady distribution of temperature under the insulation of the cooler
by employing Formulas (1.7}, (1.14) and (2.8). In particular, the tempe-
rature fluctuations at the center under the insulation can be determined
by (v (x) is an even function)

8(0,0,t) = [A -+ § oty S€ost 1 (_ “})j giot
§=20-

oQ
T
(5ezs+1 (_ ‘Z) == Z (— 1P By, 2p+1)

p=0

(2.16)

It is now easy to calculate the quantity of heat Q transferred to the
cooler per unit time. In order to do this, we use the equation

1 0
Q=—2, X (g-g)uzodx = [--— 204 N, §n (%Ié-)ﬁmodn] eiwt
In view of (2.7) and (2.8) this becomes

® Seper.q (0) ot/
Q= —2%, {KLA + E T 1‘38;12 O @ast+1 Basy, 21)—!—1] eiot (2.17)
s, p=1

The approximate determination of the coefficients a, can be achieved
in the same way, as in the steady case [11].

As a first approximation, it is possible to put a, = =, 1.e. et = 0.
Thus, calculations for C = 0 lead to the relation ag = |6(0, 0, t)/A|
versus v = kl/},, represented in Fig. 1 for different values of z = ¢ 5.
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If the width of the insulation is sufficiently large, it 1s possible
to obtain a closed solution for the edge effect of penetration of thermal
waves under the insulation. In order to achieve this we consider a semi-
infinite layer of insulation in the range (0, ). For this case the
function u(x, y) will be represented in the form of an integral of plane
thermal waves (H = ):

Ulx,y)= \ I'w) e—wxtuV W oy (o = (1 4 J) 52) (2.18)

é»_/>8

The conditions (1.16) and (1.15) lead to the following equations for

Ir:
S I (w)e iwdw =0 for <0 (2.19)
|V To+ m) @) eidw =0 tor 250 (220)
B /o, __Jﬁ_ ,.”_kﬁ o oA
(Z=rm 7 (1,5)‘0)

The general theory of this type of equation [6-9 ] is based on the
factorization of the expression

Vwr 4+ gl b o2 = [, (w) f (w) (2.21)

where the function f, (w) is regular and possesses no zeros in the upper
half-plane (Im w > 0 ), and function f_(w) is regular and possesses no
zeros in the lower half-plane (Im w < 0). In addition f_(w) = f, (@) and
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4B
udu

o Grscon ) = Vi cosB T oosexp(— o= | 224} z_smp) (222)

T—3

We put v = r exp(~jsx), where s has a negative imaginary part which,
in the final solution, must be made to tend to zero. Thus, the solutions
of Equations (2.19) and (2.20) can be exprcssed by the formula

1

.
P'w) = — s momnwe—»

(2.23)

Formulas (2.18) and (2.23) determine the solution for the form of v
under consideration. Subsequent summation leads to the general solution
for v(x).

3. Damping properties of the layer of insulation. Let the
width of the insulation of the floor of the cooler 2 ! be sufficiently
large, so that along the whole width and for — H< y < 0 the simplified
equation can be used, i.e.

o= (14 ) e (3.1)

Solving this equation subject to conditions (1.4) and (1.11), we ob-
tain

0(y, 1) [D-m o (1 + )+ Beom, ( 1+ -;’T)} eiot (3.2)
D - sz B
"ky simhp 4 A, Hdeoshy, o kyoosnp, + A tr, [~ tagmny, (33)

In particular, the fluctuations of temperature under the insulation
(y = 0) are determined by the expression

_ ky ot . sinh pg st
5 (O’ t) - ky+ Az [J-aH“‘lcoth e Ceio + (conh e kycomn p.g + }\apaﬂ"xlhhpa) Beie (34)

We now perform a quantitative analysis of expressions (3.2)-(3.4) for
H = w. In this case, we have

kg

8(0, 1) = @ (jo) Ceit, D (jo) =g yyn,

8y, 7) = 0(0,2) V% (3.5)

The last formula shows that the character of the decay of the thermal
waves along the depth is the same as in the case of a free, non-insulated
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ground, first analyzed by Fourier. However, the initial amplitude at

y = 0 is not equal to C, but is determined by the forcing function ®(j @)
which characterizes the reaction under the insulation in response to a
harmonic thermal pulse of wnit amplitude. We shall represent this func-
tion in the form

D (jo) = ¢ (0) e,  ¢(w) =|D ()]
2 (0) = arg @71 (jo) (3.6)

where y{®) denotes the relative amplitude of temperature fluctuations
under the insulation and ¢ (w) is the phase shift.

\

10

601 P

P
(d LT

— "
\tp e &
N 30°%A~
N
T -
0 N a - <. —_——
05 Z 0 0F 1.2 z
FI1G. 2. FI1G. 3.

For approximate computation we can use the simplified expressions
(2.3) from which we obtain

Vo

b() = ;
kost? z — c0s? 2 -+ voetmh2z 4 vyPatn® z -+ cos? 3)|'2

1 4 vgtannz Ay pan\'k 3.7

;.ns(m):tunzm (vozt(af) N z:cuﬁ) ( )

For small values of z, expressions (3.7) reduce to

= Yo
(‘))3 (‘”) - (Voz + 2\!02 4 222)‘/’
tan €g ((l)) = ﬁ-? (3.8)
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where ¢ (o) and ¢ [(®) can also be obtained by identifying the quantities

k, and k, with the steady-state value of the coefficient of heat trans-
fer k.

The dependence of ¢ and € on z is plotted in Figs. 2 and 3 for vy =
0.047, ehich corresponds to wet soil and glass wool insulation. The
graphs show how fast the amplitude of the oscillation decays under the
insulation when z = o uB is increased. They show, further, that making
use of the steady-state value of the coefficient of heat transfer (¢
and es) leads to vanishingly small values of amplitude and phase shift.

If the temperature fluctuations A  are random in nature but steady
[10], and if the correlation function R (r) is known for them, or alter-
natively, if the spectral distribution S c(m) is known, then the spectral
distribution Sy(w) for the temperature fluctuation under the layer of
insulation can be determined from the simple relation

8o (@) = | ® () [2S. (0) (3.9)

In the case of a random process, R(r) and S{w) are connected by the
Fourier transforms [ 10 ]

oo

S (0) = S R (x)e—iody — 2& R (z) cos ot d=
. * (3.10)
R(z) = 51; S S (w)ei*T do = 211{ S S (w) cos wtdw

It follows that having determined R _(r) or S_(w) from experimental
data, it is possible to calculate Se(ws and Ry(r) from Equations (3.9)
and (3.10) and, in particular, the dispersion of the quantity 6 equal
to Rg(0). Having done that, it is not difficult to calculate the remain-
ing statistical characteristics of the distribution of #. A similar
method can be used in the general case too, because Section 2 contains
transfer functions for a series of quantities.
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